Causes of Methanogenesis-Linked Climate Feedbacks in a Discontinuous Permafrost Peatland

Jeffrey P. Chanton¹, <u>Suzanne B. Hodgkins¹</u>, Patrick M. Crill², Carmody K. McCalley³, Scott R. Saleska³ and Virginia Rich³ ¹Florida State University, Tallahassee, FL, USA ²Stockholm University, Stockholm, Sweden ³University of Arizona, Tucson, AZ, USA

9th INTECOL International Wetlands Conference, Orlando, FL June 8, 2012

Study Site: Stordalen Mire, northern Sweden

Peatland (wetland with organic soil).
Underlain by patchy permafrost.

Extent of permafrost in the Northern Hemisphere. Stordalen Mire is marked with a star.

Research Questions

- ---- permafrost table depth
- water table depth

Diagram adapted by V. Rich and S. Hodgkins from Johansson, T., et al. 2006. *Global Change Biology* 12: 2352-2369.

- soil surface
- ---- permafrost table depth
- water table depth

Diagram adapted by V. Rich and S. Hodgkins from Johansson, T., et al. 2006. *Global Change Biology* 12: 2352-2369.

CH₄ Production Mechanisms: C Isotopes in CH₄

CO₂ reduction:

 $2 \text{ CH}_2\text{O} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ CO}_2 + 4 \text{ H}_2$ $CO_2 + 4 \text{ H}_2 \rightarrow CH_4 + 2 \text{ H}_2\text{O}$ net reaction: $2 \text{ CH}_2\text{O} \rightarrow CH_4 + CO_2$

acetate fermentation:

2 CH₂O (higher MW) → CH₃COOH CH₃COOH → CH₄ + CO₂ net reaction: 2 CH₂O → CH₄ + CO₂

lower values				hi		
	-80		δ ¹³ C-CH ₄	-50	va	values
		_				

typical of: lower-quality organic matter, low pH, deeper in peat column (e.g. bog sites) typical of: higher-quality organic matter, higher pH, shallower in peat column (**e.g. fen sites**)

• δ^{13} C-CH₄ also affected by oxidation, so we also measure δ D.

δ^{13} C of Dissolved CH₄

- Thaw \rightarrow more acetate fermentation.
- Greater depth in peat column (older OM) → more CO₂ reduction.
- Porewater gas concentrations and δD -CH₄ were inconclusive.

Incubations: Obtaining a More Detailed Picture

• Procedure:

- Waterlogged peat incubated anaerobically in the dark.
- Measure buildup and δ^{13} C of CH₄ and CO₂ in headspace.
- What we learn:
 - Organic matter lability, e.g. "rotting potential:"
 - gas production rates
 - CH₄ production mechanisms:
 - $\delta^{13}C$ of CH_4
 - Relative rates of methanogenesis vs. non-methanogenic decomposition:
 - relative rates of CH₄ and CO₂ production
 - δ^{13} C of CO₂

Overall peat "rotting potential": fens >> bogs = col. palsas

Incubation Results

Overall peat "rotting potential": fens >> bogs = col. palsas

Interpreting Isotope Data for CO₂ Sources

Incubation Results

- δ¹³C-CH₄ reveals methanogenesis dominated by:
 - acetate fermentation in fens
 - CO₂ reduction in bogs and col. palsas
- δ¹³C-CO₂ vs. δ¹³C-CH₄ reveals amount of methanogenesis rel. to non-methanogenic decomposition:

fens > bogs > col. palsas

col. palsa

bog

Incubation Results

- CH_4/CO_2 ratios confirm non-methanogenic CO_2 production trend predicted by $\delta^{13}C-CO_2$.
- Clear separation between habitat types.

Conclusions

• Overall peat lability:

fen > (bog = collapsed palsa)

Amount of methanogenesis relative to non-methanogenic decomposition:

fen > bog > collapsed palsa

- The absolute rate of non-methanogenic decomposition is unusually high in collapsed palsas, possibly due to a higher concentration of electron acceptors.
 - Porewater has been tested for NO_3^- , but there was no correlation.
 - Increased non-methanogenic decomposition could be due to some other electron acceptor.
- Methane production mechanisms:

bog, collapsed palsa: CO₂ reduction fen: acetate fermentation

- Future work:
 - More detailed analysis of peat/porewater chemistry.
 - Integration with microbial data into Wetland-DNDC model.

Acknowledgements

- Jeffrey Chanton (advisor)
- Scott Saleska (Isogenie project coordinator)
- Carmody McCalley (flux measurements)
- Carmody McCalley, Tyler Logan (help with fieldwork)
- Claire Langford (IRMS), Alejandra Mickle and Tyler Mauney (C/N), John Kaba (DOC), Malak Tfaily (PARAFAC, FT-ICR-MS), David Podgorski (FT-ICR-MS), Samantha Bosman (radiocarbon sample prep), Michael Fundora (misc. lab work)
- Liz Corbett (isotope calculations)
- Abisko Mountain Research Station (infrastructure for fieldwork)
- Florida State University
- U.S. Department of Energy (funding)

Sampling Sites

Key:

palsa
 collapsed palsa
 Sphagnum
 Sphagnum/Eriophorum transition
 Eriophorum angustifolium
 Carex