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Study Site: Stordalen Mire, northern 
Sweden 

• Peatland 
(wetland with 
organic soil). 

• Underlain by 
patchy 
permafrost. 

 

Extent of permafrost in the 
Northern Hemisphere. 
Stordalen Mire is marked 
with a star. 



Research Questions 
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1. How do peat biogeochemistry and 
CH4 and CO2 emissions respond to 
permafrost thaw? 

2. What is the role of particular 
microbial communities? 

plant organic 
matter 

structure 

microbial 
communities 

“IsoGenie” project: Combine microbial data with biogeochemical 
data to create a model of greenhouse gas responses to thawing. 
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permafrost table depth Diagram adapted by V. Rich and S. Hodgkins from Johansson, 
T., et al. 2006. Global Change Biology 12: 2352-2369. 
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Hypothesized trends with thaw: 

peat becomes more labile 

CH4 production mechanism changes 



CH4 Production Mechanisms: 
C Isotopes in CH4 

• δ13C-CH4 also affected by oxidation, so we also 
measure δD. 

CO2 reduction: 
2 CH2O +2 H2O  2 CO2 + 4 H2  

CO2 + 4 H2  CH4 + 2 H2O  
net reaction: 2 CH2O  CH4 + CO2 

acetate fermentation:  
2 CH2O (higher MW)  CH3COOH 

CH3COOH  CH4 + CO2  
net reaction: 2 CH2O  CH4 + CO2 

typical of: lower-quality   
organic matter, low pH, 
deeper in peat column 

(e.g. bog sites) 

typical of: higher-quality 
organic matter, higher pH,  
shallower in peat column 

(e.g. fen sites) 
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CO2 Production Mechanisms: 
C Isotopes in CH4 and CO2  

CO2 from non-
methanogenic pathways 

(e.g., anaerobic respiration, 
high-molecular-weight 

fermentation) 

CO2 from 
methanogenesis 

CH4 

average = -26 
separation depends 
on CH4 production 
mechanisms 

-26 (parent organic matter) 
δ13C  

CO2 measured is a 
combination of 
both sources. 



δ13C of Dissolved CH4 

• Thaw  more acetate fermentation. 
• Greater depth in peat column (older OM)  more CO2 

reduction. 
• Porewater gas concentrations and δD-CH4 were 

inconclusive. 

acetate ferm. CO2 red. acetate ferm. CO2 red. 
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Incubations: Obtaining a More 
Detailed Picture 

• Procedure: 
– Waterlogged peat incubated anaerobically in the dark. 
– Measure buildup and δ13C of CH4 and CO2 in headspace. 

• What we learn: 
– Organic matter lability, e.g. “rotting potential:” 

• gas production rates 

– CH4 production mechanisms: 
• δ13C of CH4 

– Relative rates of methanogenesis vs. non-methanogenic 
decomposition: 
• relative rates of CH4 and CO2 production 
• δ13C of CO2 



Incubation Results 

Overall peat “rotting potential”: 

fens >> bogs = col. palsas 
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Incubation Results 

Overall peat “rotting potential”: 

fens >> bogs = col. palsas 
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separation depends on CH4 
production mechanisms 

(1) Use known δ13C-CH4 to determine 
theoretical δ13C-CO2 if there were no 
non-methanogenic CO2 production. 

(2) Downward shift of δ13C-CO2 from 
theoretical values indicates amount of 
non-methanogenic production. 

δ13C-CO2 (measured) 

δ13C-CO2 (measured) 

A 

B 

a/A > b/B, so A has more 
non-methanogenic 

decomposition. 

δ13C  

Interpreting Isotope Data for CO2 Sources 

a 

b 



• δ13C-CH4 reveals 
methanogenesis 
dominated by: 
– acetate fermentation in 

fens 

– CO2 reduction in bogs and 
col. palsas 

• δ13C-CO2 vs. δ13C-CH4 
reveals amount of 
methanogenesis rel. to 
non-methanogenic 
decomposition: 

fens > bogs > col. palsas -100 
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CO2 red. 

acetate 
ferm. 
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• CH4/CO2 ratios confirm non-methanogenic CO2 production 
trend predicted by δ13C-CO2. 

• Clear separation between habitat types. 
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Conclusions 

• Overall peat lability: 
   fen > (bog = collapsed palsa) 
• Amount of methanogenesis relative to non-methanogenic 

decomposition: 
   fen > bog > collapsed palsa 

– The absolute rate of non-methanogenic decomposition is unusually 
high in collapsed palsas, possibly due to a higher concentration of 
electron acceptors. 
• Porewater has been tested for NO3

–, but there was no correlation. 
• Increased non-methanogenic decomposition could be due to some other 

electron acceptor. 

• Methane production mechanisms: 
   bog, collapsed palsa: CO2 reduction 
   fen: acetate fermentation 
• Future work: 

– More detailed analysis of peat/porewater chemistry. 
– Integration with microbial data into Wetland-DNDC model. 
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